

MOHAMED SATHAK HAMID COLLEGE OF ARTS AND SCIENCE FOR WOMEN (Promoted By Mohamed Sathak Trust, Chennai & Affiliated to Algappa University, Karaikudi) Pokkuvarathu Nagar, Rameswaram Main Road, Vani Post, Sakkarakottai (Panchayat) Ramanathapuram – 623 536.

ALAGAPPA UNIVERSITY, KARAIKUDI NEW SYLLABUS UNDER CBCS PATTERN (w.e.f. 2017-18)

B.Sc. MATHEMATICS – PROGRAMME STRUCTURE

Sem.	Part	Course Code	Title of the Course	Cr.	Hrs. / Week	Max. Marks		
Sem.						Int.	Ext.	Total
	Ι	711T	Tamil / Other Languages – I	3	6	25	75	100
	II	712E	English – I	3	6	25	75	100
		7BMA1C1	Core–I-Calculus	4	6	25	75	100
	III	7BMA1C2	Core–II-Algebra and Trigonometry	4	6	25	75	100
Ι			Allied – I (Theory only) (or)	5	5	25	75	100
1			Allied – I (Theory cum Practical)	4	3	15	60	75
			Allied Practical – I	-	2**			
	IV	7NME1A/ 7NME1B/ 7NME1C	(1) Non-Major Elective – I	2	1	25	75	100
			Total (Allied Theory only)	21	30			600
			Total (Allied Theory cum Practical)	20	- 30			575
	Ι	721T	Tamil / Other Languages – II	3	6	25	75	100
	II	722E	English – II	3	6	25	75	100
	III	7BMA2C1	Core–III- Analytical Geometry of 3D and Vector Calculus	4	6	25	75	100
II		7BMA2C2	Core–IV-Sequences and Series	4	5	25	75	100
			Allied – II (Theory only) (or)	5	5	25	75	100
			Allied– II (Theory cum Practical)	4	3	15	60	75
			Allied Practical – I	2	2	20	30	50
	IV	7BES2	(3) Environmental Studies	2	2	25	75	100
			Total (Allied Theory only)	21	20			600
			Total (Allied Theory cum Practical)	22	30			625
	Ι	731T	Tamil / Other Languages – III	3	6	25	75	100
	II	732E	English – III	3	6	25	75	100
	III	7BMA3C1	Core–V-Abstract Algebra	4	5	25	75	100
	III	7BMA3C2	Core–VI- Differential Equations and its Applications	4	5	25	75	100
	III		Allied – III (Theory only) (or)	5	5	25	75	100
			Allied–III (Theory cum Practical)	4	3	15	60	75
III			Allied Practical – II	-	2**			
	IV	7NME3A/ 7NME3B/ 7NME3C	(1) Non-major Elective – II	2	1	25	75	100
		7SBS3A1/ 7SBS3A2/ 7SBS3A3	(2) Skill Based Subjects– I	2	2	25	75	100
	V	7BEA3	Extension Activities	1	-	100	-	100
			Total (Allied Theory only)	24	30	-	-	800

			Total (Allied Theory cum Practical)	23				775
	Ι	741T	Tamil / Other Languages – IV	3	6	25	75	100
	II	742E	English – IV	3	6	25	75	100
	III	7BMA4C1	Core-VII-Transform Techniques	4	5	25	75	100
	III	7BMA4C2	Core–VIII-Linear Algebra	4	4	25	75	100
	III		Allied – IV(Theory only) (or)	5	5	25	75	100
			Allied –IV(Theory cum Practical)	4	3	15	60	75
IV			Allied Practical - II	2	2	20	30	50
		7SBS4B1/	(2) Skill Based Subjects – II	2	2	25	75	100
		7SBS4B2/						
	IV	7SBS4B3						
		7BVE4/	(4) Value Education /					
		7BMY4/	Manavalakalai Yoga /	2	2	25	75	100
		7BWS4	Women's Studies					
			Total (Allied Theory only)	23	30	_	_	700
			Total (Allied Theory cum Practical)	24				725
	III	7BMA5C1	Core–IX-Real Analysis	4	6	25	75	100
	III	7BMA5C2	Core–X-Statistics I	4	5	25	75	100
	III	7BMA5C3	Core–XI-Operations Research I	4	5	25	75	100
	III	7BMAE1A/	Elective (I) - A) Graph Theory (or)	5	5	25	75	100
		7BMAE1B	B) Special Functions					
V	III	7BMAE2A/	Elective (II) – A) Numerical Analysis	5	5	25	75	100
		7BMAE2B	(or) B) Combinatorics					
		7SBS5A4/	(2) Skill Based Subjects – I	2	2	25	75	100
	IV	7SBS5A5/	(2) Skill Based Subjects – I	2	2	25	75	100
		7SBS5A6/						
		7SBS5A7		26	20			700
	III	7BMA6C1	Total Core – XII Mechanics	<u>26</u> 4	30 6	- 25	- 75	700 100
	III	7BMA6C1 7BMA6C2		4	5	25	75	100
	III	7BMA6C2 7BMA6C3	Core – XIII Complex Analysis Core – XIV Statistics II	4	5	25	75	100
	III	7BMA6C3 7BMA6C4	Core – XV Statistics II Core – XV Operations Research II	4	5	25	75	100
VI	III	7BMA6C4 7BMAE3A/	Elective – III A) Discrete	4 5	5	25	75	100
	111	7BMAE3A/ 7BMAE3B	Mathematics (or) B) Fuzzy Algebra	5	5	23	15	100
	IV	7SBS6B4/	(2) Skill Based Subjects – II	2	2	25	75	100
	1 V	7SBS6B5/	(2) SKIII Dascu Subjects – II	4	<i>–</i>	25	15	100
		7SBS6B6/	(2) Skill Based Subjects – II	2	2	25	75	100
		7SBS6B7	(2) Shin Dubeu Subjects II	-	-			
	1	,	Total	25	30	-	_	700
			Grand Total	140	180	-	-	4100
						I	ı	

** University Examinations will be held in the Even Semesters only.

B.Sc. MATHEMATICS

I YEAR - I SEMESTER COURSE CODE: 7BMA1C1

CORE COURSE - I – CALCULUS

Unit – I

Successive Differentiation – Leibnitz formula – Envelopes – curvatures – circle, radius and centre of curvature – Evolutes.

Unit – II

Polar Coordinates – Radius of curvature in polar coordinates, p-r equation of a curve – Asymptotes – Method of finding asymptotes – problems

Unit – III

Definite Integrals and their properties –problems – Integration by parts — Reduction formulae - Bernoulli's formula.

Unit – IV

Double and triple integrals and their properties – Jacobian – Change of order of integration.

Unit – V

Beta and Gamma functions – properties – problems

Text Book:

1. Calculus, Volume I (edi.2015) andVolume II (edi.2016) by S.Narayanan and T.K.ManicavachagomPillay, S.Viswanathan (Printers and Publishers) Pvt. Ltd.

Unit I	Chapter 3 (Volume I) sections 1 & 2	
	Chapter 10 up to section 2.5 (Volume I)	
Unit II	Chapter 10 sections 2.6, 2.7 (Volume I)	
	Chapter 11 upto section 7	
Unit III	Chapter 1 sections 11, 12, 13, 14, 15.1(Volume II)	
Unit IV	Chapter 5 sections 1, 2, 3, 4 (Volume II)	
	Chapter 6 sections 1, 2 (Volume II)	
Unit V	Chapter 7 sections 2, 3, 4, 5, (Volume II)	

Books for Reference:

- 1. Calculus and Fourier series by Dr. M.K.Venkataraman and Mrs. Manorama Sridhar, The National Publishing Company, Chennai.
- 2. Calculus Volume I and Volume II by Dr. S.Arumugam and A.Thangapandi Isaac, New Gamma Publishing House, Palayamkottai.

I YEAR - I SEMESTER COURSE CODE: 7BMA1C2

CORE COURSE - II – ALGEBRA AND TRIGONOMETRY

Unit – I

Summation of Series - Binomial Series - Exponential Series - Logarithmic Series.

Unit – II

Relation between roots and coefficients – Sum of the powers of the roots – Reciprocal Equation – Transformation of Equations.

Unit – III

Multiple Roots – Nature and position of roots –Descarte's rule of Signs, Rolle's theorem – Sturm's functions – Problems – Finding number and position of the real roots – Finding the nature and position of the roots (Cardans&Ferrar's method not included) – Approximate solution of Numerical equations – Newton's method – Horner's method.

Unit – IV

Applications of Demoivre's Theorem – Expression for $sinn\theta$, $cosn\theta$, $tann\theta$ - Expression for $sin^n\theta$, $cos^n\theta$ - Expansion of $sin\theta$, $cos\theta$, $tan\theta$ in powers of θ .

Unit – V

Hyperbolic functions – Inverse hyperbolic functions, and logarithm of a complex number.

Text Books:

- 1. Summation of Series and Trigonometry by Dr.S.Arumugam and A.Thangapandi Isaac New Gamma Publishing House,Palayamkottai.
- 2. Theory of Equations, Theory of Numbers and Trigonometry by Dr. S.Arumugam and A.ThangapandiIssac New Gamma Publishing House, Palayamkottai July 2011.

Unit I	Chapter 1 sections $1.1 - 1.3$ of (1)
Unit II	Chapter 5 sections 5.2 to 5.5 of (2)
Unit III	Chapter 5 sections 5.6, 5.7, 5.10 of (2)
Unit IV	Chapter 6 of(2)
Unit V	Chapter 7 and Chapter 8 of (2)

Books for Reference:

- 1. Trigonometry by S.Narayanan, T.K.ManicavachagomPillay.
- 2. Algebra Volume I by T.K.ManicavachagomPillay, T.Natarajan, KS.Ganapathy.

I YEAR - II SEMESTER COURSE CODE: 7BMA2C1

CORE COURSE-III-ANALYTICAL GEOMETRY OF 3D AND VECTOR CALCULUS

Unit – I

Preliminaries – Direction cosines – Direction – ratios – angle between the lines – Various forms of equation of a plane – angle between two planes – Angle bisectors of two planes – Equation of a plane through the line of intersection of two planes – Straight lines – Equation of a straight line in various forms – problems.

Unit – II

A Plane and a line – Coplanar lines, Skew lines – S.D. between two Skew lines, Spheres Equation of a Sphere – Tangent line and Tangent plane – Section of a Sphere.

Unit – III

Cone – Definition – Equation of the Cone in various forms – Equation of a right circular Cone – Cylinder – Definition – Equation of a right circular cylinder – simple problems.

Unit – IV

Vector Calculus – Vector Differentiation– Vector Algebra – Differentiation of vectors - Gradient – Divergence and Curl – Solenoidal – irrotational – Harmonic Vector.

Unit – V

Line and Surface Integrals – Line Integrals – Surface Integrals - Theorems of GREEN, GAUSS and STOKE'S(Statements only) problems.

Text Books:

- 1. Analytical Geometry of 3D and Vector Calculus by Dr. S.Arumugam and A.ThangaPandi Isaac, New Gamma Publishing House, Palayamkottai,2014
- 2. Analytical Geometry 3D and Vector Calculus by Dr. M.K.Venkataraman and Mrs. Manorama Sridhar, National Publishing Company, Chennai, 2001.

Unit I	Chapter 1, Chapter 2, Chapter 3, Section 3.1 of (1)
Unit II	Chapter 3 section 3.2, Chapter 4 sections 4.1 to 4.3 of (1)
Unit III	Chapter 4 sections 4.13 to 4.16, 4.18 to 4.21 of (2)
Unit IV	Chapter 5 of (1)
Unit V	Chapter 7 of (1)

Books for Reference:

1. A text book of Analytical Geometry Part II – Three Dimensions by T.K.ManicavachagomPillay and T.Natarajan, S.Viswanathan (Printers & Publishers) Pvt. Ltd. 2001

 Vector Calculus by S.Narayanan and T.K.ManicavachagomPillay, S.Viswanathan (Printers & Publishers) Pvt. Ltd. 1997

I YEAR - II SEMESTER COURSE CODE: 7BMA2C2

CORE COURSE - IV – SEQUENCES AND SERIES

Unit – I

Sequences – bounded sequences – Monotonic sequences – Convergent sequences – Divergent and Oscillating sequences – The algebra of limits.

Unit – II

Behaviour of monotonic sequences – Some Theorems on limits – Subsequences – limit points –Cauchy sequences – The upper and lower limits of a sequence.

Unit – III

Series of positive terms –infinite series – Comparison test –Kummer's test – Root test and Condensation test – Integral test

Unit – IV

Series of arbitrary terms – Alternating series – Absolute convergence – Tests for convergence of series of arbitrary terms

Unit – V

Rearrangement (Derangement) of Series - Multiplication of series.

Text Book:

1. Sequences and Series by Dr. S.Arumugam and Prof. A.ThangapandiIssac, New Gamma Publishing House, Palayamkottai, December 2015.

Unit I	Chapter 3 sections 3.1 to 3.6
Unit II	Chapter 3 sections 3.7 to 3.12
Unit III	Chapter 4 sections 4.1 to 4.5
Unit IV	Chapter 5 sections 5.1 to 5.3
Unit V	Chapter 5 sections 5.4 & 5.5

Books for Reference:

1. Algebra Volume-I by T.K.Manicavachagom Pillay, T.Natarajan and K.S.Ganapathy.

II YEAR - III SEMESTER COURSE CODE: 7BMA3C1

CORE COURSE - V – ABSTRACT ALGEBRA

Unit – I

Groups : Definition and Examples – Elementary Properties of a Group – Equivalent Definitions of a Group – Permutation Groups.

Unit – II

Subgroups - Cyclic Groups - Order of an Element - Cosets and Lagrange's Theorem.

Unit – III

Normal Subgroups and Quotient Groups - Isomorphism - Homomorphism.

Unit – IV

Rings : Definitions and Examples – Elementary properties of rings – Isomorphism – Types of rings – Characteristic of a ring – Subrings – Ideals – Quotient rings.

Unit – V

Maximal and Prime Ideals – Homomorphism of rings – Field of quotients of an Integral domain – Unique factorization domain – Euclidean domain.

Text Book:

1. S.Arumugam and A.ThangapandiIssac, Modern Algebra, SciTech Publications Pvt. Ltd., Chennai, 2003.

Unit I	Chapter 3 sections 3.1 to 3.4
Unit II	Chapter 3 sections 3.5 to 3.8
Unit III	Chapter 3 sections 3.9 to 3.11
Unit IV	Chapter 4 sections 4.1 to 4.8
Unit V	Chapter 4 sections 4.9 to 4.11, 4.13 & 4.14

Books for Reference:

- 1. N.Herstein, Topics in Algebra, John Wiley & Sons, Student 2nd edition, 1975.
- 2. Vijay, K.Khanna and S.K.Bhambri, A course in Abstract Algebra, Vikas Publishing House Pvt. Ltd.
- 3. Dr. R.Balakrishnan and N.Ramabadran, A text book of Modern Algebra, Vikas Publishing House Pvt. Ltd, New Delhi, 1994.

II YEAR - III SEMESTER COURSE CODE: 7BMA3C2

CORE COURSE - VI – DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS

Unit – I

Exact Differential Equations – Conditions for equation to be exact –Working rule for solving it – problems – Equations of the first order but of higher degree – Equations solvable for p, x, y, clairaut's form – Equations that do not contain (i) x explicitly (ii) y explicitly – Equations homogenous in x and y–Linear Equation with constant coefficients.

Unit – II

Linear equations with variable coefficients – Equations reducible to the linear equations – Simultaneous Differential Equations – First order and first degree – Simultaneous linear Differential Equations.

Unit – III

Linear equations of the second order – Complete Solution given a known integral – Reduction to Normal form – Change of the independent variable – Variation of parameters – Total Differential Equations – Necessary and Sufficient condition of integrability of Pdx + Qdy + Rdz = 0, Rule for solving it.

Unit – IV

Partial Differential Equations of the First oder – classifications of integrals – Derivations of Partial Differential Equations – Special methods – Standard forms – Charpit's method.

Unit – V

Flow of water from an Orifice – Falling bodies and other rate problems – Brachistochrone Problem – Tautochronous property of the Cycloid – Trajectories.

Text Book:

 Differential Equations and its Applications by S.Narayanan&T.K.ManickavachagomPillay, S.Viswanathan (Printers& Publishers) Pvt. Ltd., 2015.

Unit I	Chapter 2 – sections 6.1 to 6.3; Chapter 4; Chapter 5 – sections 1, 2, 3, 4
Unit II	Chapter 5–sections 5, 6; Chapter 6 – sections 1 to 6
Unit III	Chapter 8-sections 1 to 4; Chapter 11
Unit IV	Chapter 12 – sections 1, 2, 3, 4, 5.1 to 5.4 & Section 6
Unit V	Chapter 3 – sections 2, 3, 4, 5; Chapter 10 – sections 1.1 – 1.3

Book for Reference:

1. Differential Equations and its Applications by Dr. S.Arumugam and Mr. A.ThangapandiIssac, New Gamma Publishing House, Palayamkottai, Edition, 2014.

II YEAR - IV SEMESTER COURSE CODE: 7BMA4C1

CORE COURSE - VII – TRANSFORM TECHNIQUES

Unit – I

Laplace Transform – Definition – Laplace Transform of Standard functions – Elementary Theorems – Laplace Transform of periodic functions – problems.

Unit – II

Inverse Laplace Transforms – Standard formulae – Basic Theorems – Solving Ordinary Differential Equations with constant coefficients, variable coefficients and simultaneous linear equations using Laplace Transform.

Unit – III

Fourier Series – Definition – To find the Fourier coefficients of Periodic functions of period 2 π - even and odd functions – Half range series – problems.

Unit – IV

Fourier Transforms – Complex form of Fourier Integral Formula – Fourier Integral theorem – properties of Fourier Transform – Fourier sine and cosine Transforms – properties – Parsivals Identity - Problems

Unit – V

Z Transforms – Definition – Proprieties – Z Transforms of some basic functions – Problems – Inverse Z Transforms – Methods to find the inverse Z Transform – Use of Z – Transforms to solve finite Difference Equations – problems.

Text Books:

- 1. Calculus Volume III by S.Narayanan and T.K.ManicavachagomPillay, S.Viswanathan (Printers & Publishers) Pvt. Ltd., 2014.
- 2. Engineering Mathematics 3rd Edition by T.Veerarajan, Tata McGraw Hill Publishing Company Limited, New Delhi.

Unit I	Chapter 5 sections 1 to 5 of (1)
Unit II	Chapter 5 sections 6 to 10 of (1)
Unit III	Chapter 6 sections 1 to 4, 5.1,5.2 of (1)
Unit IV	Chapter 6 sections 9.1 to 9.3, 10, 11.1, 11.2, 12, 13, 14, 14.1, 15 of (1)
Unit V	Chapter 7 sections 7.1 to 7.5 of (2)

Book for Reference:

1. Transforms and Partial Differential Equations by Dr.A.Singaravelu, Meenakshi Agency, Chennai

II YEAR - IV SEMESTER COURSE CODE: 7BMA4C2

CORE COURSE - VIII – LINEAR ALGEBRA

Unit – I

Vector Spaces – Definition and examples – Subspaces – Linear Transformation – Span of a set.

Unit – II

Linear Independence – Basis and Dimension – Rank and Nullity.

Unit – III

Matrix of a Linear Transformation – Inner Product Space – Definition and examples – Orthogonality – Orthogonal complement.

Unit – IV

Algebra of Matrices – Types of Matrices – The inverse of a matrix – Elementary Transformations – Rank of a Matrix – Simultaneous linear equations.

Unit – V

Characteristic Equation and Cayley – Hamilton theorem Eigen values and Eigen Vectors, Bilinear forms – Quadratic forms.

Text Book:

1. Dr. S.Arumugam and Mr. A.ThangapandiIssac, Modern Algebra, SciTech Publications (India) Pvt. Ltd., Chennai, 2003.

Unit I	Chapter 5sections 5.1 to 5.4
Unit II	Chapter 5 sections 5.5 to 5.7
Unit III	Chapter 5 sections 5.8, Chapter VI sections 6.1 to 6.3
Unit IV	Chapter 7 sections 7.1 to 7.6
Unit V	Chapter 7 sections 7.7, 7.8 Chapter VIII sections 8.1, 8.2

Books for Reference:

- 1. S.Lang, Introduction to Linear Algebra 2nd Edition, Springer 2005.
- 2. AR.Vasistha, Modern Algebra, Krishna Prakashan Publication.

III YEAR - V SEMESTER COURSE CODE: 7BMA5C1

CORE COURSE - IX – REAL ANALYSIS

Unit – I

Introduction – Sets and functions – Countable and Uncountable sets – Inequalities of Holder and Minkowski – Metric spaces – Definition and examples – Bounded sets in a metric space – Open Ball in a metric space – Opensets.

Unit – II

Subspace – Interior of a set – Closed sets – Closure – limit point – Dense sets – Completeness – Baire's Category Theorem

Unit – III

Continuity – Homeomorphism – Uniform continuity.

Unit – IV

Connectedness – Definition and examples – Connected subsets of R – Connectedness & Continuity.

Unit – V

Compact Metric spaces – Compact subsets of R – Equivalent Characterization for Compactness – Compactness and Continuity.

Text Book:

1. Modern Analysis, Dr. S.Arumugam& Mr. A.ThangapandiIssac, New Gamma Publishing House, Palayamkottai, Edition 2015.

Unit I	Chapter 1 sections 1.1 to 1.4
	Chapter 2 sections 2.1 to 2.4
Unit II	Chapter 2 sections 2.5 to 2.10 & Chapter 3
Unit III	Chapter 4 sections 4.1 to 4.3
Unit IV	Chapter 5
Unit V	Chapter 6

Book for Reference:

1. Richard R.Goldberg, Methods of Real analysis, IBM Publishing, New Delhi.

III YEAR - V SEMESTER COURSE CODE: 7BMA5C2

CORE COURSE - X – STATISTICS - I

Unit – I

Central Tendencies – Introduction – Arithmetic Mean – Partition Values – Mode – Geometric Mean and Harmonic Mean – Measures of Dispersion.

Unit – II

Moments – Skewness and Kurtosis – Curve fitting – Principle of least squares.

Unit – III

Correlation – Rank correlation Regression – Correlation Coefficient for a Bivariate Frequency Distribution.

Unit – IV

Interpolation – Finite Differences – Newton's Formula – Lagrange's Formula – Attributes – Consistency of Data – Independence and Association of Data.

Unit – V

Index Numbers – Consumer Price Index Numbers – Analysis of Time series – Time series – Components of a Time series – Measurement of Trends.

Text Book:

1. Statistics by Dr. S. Arumugam and Mr. A.ThangapandiIssac, New Gamma Publishing House, Palayamkottai, June 2015.

Unit I	Chapter 2sections 2.1 to 2.4
	Chapter 3 section 3.1
Unit II	Chapter 4 sections 4.1 & 4.2
	Chapter 5 section 5.1
Unit III	Chapter 6 sections 6.1 to 6.4
Unit IV	Chapter 7 sections 7.1 to 7.3
	Chapter 8 sections 8.1 to 8.3
Unit V	Chapter 9 sections 9.1 & 9.2
	Chapter 10 sections 10.1 to 10.3

Book for Reference:

1. Statistics Theory and Practice by R.S.N.Pillai and Bagavathi, S.Chand and Company Pvt. Ltd. New Delhi, 2007.

III YEAR - V SEMESTER COURSE CODE: 7BMA5C3

CORE COURSE - XI – OPERATIONS RESEARCH - I

Unit – I

Introduction – Origin and Development of O.R – Nature and features of O.R. – Scientific Method in O.R. – Modelling in O.R. – Advantages and Limitations of Models – General solution methods of O.R. models – Applications of Operations Research – Linear Programming problem – Mathematical formulation of the problem – Illustration on Mathematical formulation of linear programming problems – Graphical solution method – Some exceptional cases – General linear programming problem – Canonical and Standard forms of L.P.P – Simplex method.

Unit – II

Use of Artificial variables (Big M method – Two Phase method) Duality in linear programming – General primal and dual pair – Formulating a Dual problem – Primal – Dual pair in matrix form – Duality Theorems – Complementary Slackness Theorem – Duality and Simplex method – Dual simplex method.

Unit – III

Introduction – L.P. formulation of T.P. – Existence of solution in T.P. – The Transportation table – Loops in T.P. – Solution of a Transportation problem – Finding an initial basic – feasible solution (NWCM – LCM – VAM) – Degeneracy in TP – Transportation Algorithm (MODI Method) – Unbalanced T.P – Maximization T.P.

Unit – IV

Assignment problem – Introduction – Mathematical formulation of the problem – Test for optimality by using Hungarian method – Maximization case in Assignment problem.

Unit – V

Sequencing problem – Introduction – problem of sequencing – Basic terms used in Sequencing– n jobs to be operated on two machines – problems – n jobs to be operated on K machines–problems–Two jobs to be operated on K machines (Graphical method)–problems.

Text Book:

1. Operations Research (14th edition) by KantiSwarup, P.K.Gupta and Man Mohan, Sultan Chand & Sons, New Delhi, 2008.

Unit I	Chapter 1sections 1.1 to 1.7, 1.10
	Chapter 2 sections 2.1 to 2.4
	Chapter 3 sections 3.1 to 3.5
	Chapter 4 sections 4.1 to 4.3
Unit II	Chapter 4 sections 4.4

	Chapter 5 sections 5.1 to 5.7, 5.9
Unit III	Chapter 10 sections 10.1 to 10.3, 10.5, 10.6, 10.8, 10.9, 10.12, 10.13, 10.15
Unit IV	Chapter 11 sections 11.1 to 11.4
Unit V	Chapter 12 sections 12.1 to 12.6
Unit V	

Books for Reference:

- 1. P.K.Gupta and D.S.Hira, Operations Research, 2nd Edition, S.Chand& Co., New Delhi, 2004.
- 2. Taha H.A., Operations Research-An Introduction, 8th edition, Pearson Prentice Hall.

******** III YEAR - V SEMESTER COURSE CODE: 7BMAE1A

ELECTIVE COURSE - I (A) – GRAPH THEORY

Unit – I

Graphs – Definition and examples – Degrees – Sub graphs – Isomorphism – Ramsey Numbers – Independent Sets and Coverings – Intersection graphs and Line graphs – Matrices – Operations on Graphs.

Unit – II

Dergee Sequences – Graphic sequences – Walks, Trials and Paths – Connectedness and Components – Blocks – Connectivey – Eulerian Graphs – Hamiltonian Graphs.

Unit – III

Trees – Characterisation of Trees – Centre of a Tree – Matchings–Matchings in Bipartite Graphs.

Unit – IV

Planer graphs and properties – Characterization of Planer graphs – Thickness, crossing and outer planarity – Chromatic number and ChromaticIndex – The Five colour theorem and four colour problem.

Unit – V

Chromatic polynomials – Definitions and Basic properties of Directed Graph – Paths and Connections – Digraphs and Matrices – Tournaments.

Text Book:

1. Invitation to Graph Theory by Dr. S.Arumugam & S.Ramachandran, Scitech Publications (India) Pvt. Ltd,2001 .

Unit I	Chapter 2
Unit II	Chapters 3, 4 & 5
Unit III	Chapters 6 & 7
Unit IV	Chapter 8, Chapter 9, sections 9.1 to 9.3
Unit V	Chapter 9 section 9.4; Chapter 10

Book for Reference:

1. Graph Theory with Applications to Engineering and Computer Science byNarasinghDeo, Prentice Hall of India, New Delhi.

III YEAR - V SEMESTER COURSE CODE: 7BMAE1B

ELECTIVE COURSE – I (B) – SPECIAL FUNCTIONS

Unit – I

Power Series solution of Ordinary Differential equations of First and Second Order – Properties of Power Series – Illustrative Examples

Unit – II

Singular Points of Linear Second Order Differential Equations – The Method of Frobenius.

Unit – III

Bessel's Equation – Solution of Bessel's General Differential Equation – Recurrence Formula for $J_n(X)$ – Generating Function $J_n(X)$

Unit – IV

Hermite's Polynomials – Orthogonal properties of Hermite's polynomials – Recurrence formula for Hermite's polynomials – Laguerre polynomials – Orthogonal properties of Laguerre polynomials.

Unit – V

Legendre's Equation – Solutions of Legendre's Equation – Definition of $P_n(X)$ and $Q_n(X)$ – Laplace Definite Integral for $P_n(X)$ – Orthogonal Properties of Legendre's Polynomials – Recurrence Formula for Legendre's Polynomials – Beltrami's Result – Christoffel's Expansion.

Text Books:

- 1. Special Functions by J.N.Sharma and R.K.Gupta, Krishna Prakashan Media (Pvt.) Ltd. Meerut, Twenty Sixth Edition 2006.
- 2. Advanced Calculus for Applications by F.B.Hilde Brand, Prentice Hall, INC. Englewood Cliffs, New Jersey

Unit I	Chapter 4 sections 4.1,4.2 of (2)
Unit II	Chapter 4 sections 4.3,4.4 of (2)
Unit III	Chapter 5 sections 5.1,5.2,5.6,5.7 of (1)
Unit IV	Chapter 6 sections 6.7,6.8 Chapter 7 sections 7.3,7.7 of (1)
Unit V	Chapter 2 sections 2.1 to 2.3,2.6 to 2.10 of (1)

Books for Reference:

- 1. Differential Equations and Calculus of Variations by L.Elsgolts.
- 2. Differential Equations by Diwan and Agashe.

III YEAR - VI SEMESTER COURSE CODE: 7BMAE2A

ELECTIVE COURSE - II (A) – NUMERICAL ANALYSIS

Unit – I

Solution of Algebraic and Transcendental equations – Introduction, Bisection Method, Iteration Method, Method of False position, Newton Raphson Method.

Unit – II

Interpolation : Finite differences – Forward differences, Backward differences, Central differences, Symbolic relations, Newton's formula for Interpolation – Interpolation with unevenly spaced points – Lagrange's Interpolation formula.

Unit – III

Numerical Differentiation and Integration – Introduction, Numerical Differentiation – Errors in Numerical Differentiation – Cubic Spline method – maximum and minimum values of a tabulated function, Numerical Integration – Trapezoidal Rule and Simpson's 1/3 and 3/8 rules.

Unit – IV

Matrices and Linear system of Equations – Gaussian Elimination method, Gauss – Jordan method, Modification of the Gauss method to compute the inverse – Method of Factorization – Iterative method – Jacobi and Gauss Seidal methods.

Unit – V

Numerical Solutions of Ordinary Differential Equations – Solution by Taylor Series, Picard's method of Successive approximations, Euler method, Modified Euler method Runge – Kutta Methods.

Text Book:

1. Introductory Methods of Numerical Analysis, (4th Edition) by S.S.Sastry, PHI Learning Pvt. Ltd., New Delhi, 2009.

Unit I	Chapter 2sections 2.1 to 2.5
Unit II	Chapter 3 sections 3.3, 3.6, 3.9, 3.9.1.
Unit III	Chapter 5 sections 5.1, 5.2 - 5.2.2, 5.3, 5.4 – 5.4.1, 5.4.2, 5.4.3.
Unit IV	Chapter 6 sections 6.3.2, 6.3.3, 6.3.4, 6.4.
Unit V	Chapter 7 sections 7.2 to 7.4, 7.4.2, 7.5

Books for Reference:

1. Numerical Methods by P.Kandasamy and Others S.Chand Publications.

2. Numerical Analysis with Programming in C by Dr. S.Arumugam, A.Thangapandi Issac, Dr. A.Somasundaram, New Gamma Publishing House, Palayamkottai, 2013.

III YEAR - VI SEMESTER COURSE CODE: 7BMAE2B

ELECTIVE COURSE - II (B) – COMBINATORICS

Unit – I

Basic Combinatorial Numbers – Stirling Numbers of the First kind – Stirling Numbers of the Second kind – Recurrence Formula for $S_n{}^m$ – Recurrence formula for $P_n{}^m$ – Patterns of Distributions.

Unit – II

Generating Functions and Recurrence Relations – The Algebra of Formal Power Series – Generating functions for Permutations – Generating functions for Partitions – Inventory of Maps – Recurrence Relations.

Unit – III

Symmetric functions – The Monomial Symmetric functions K_{λ} – The complete Homogeneous Symmetric Functions h_{λ} – The Elementary Symmetric Functions a_{λ} – The Power sum Symmetric Function s_{λ} – Multinomials.

Unit – IV

Inclusion and Exclusion Principle - Permutations with Forbidden Positions – The Menage problem – Problem of Fibonacci – Polya Theory – Necklace problem and Burnside's Lemma – Cyclic Index of a Permutation Group.

Unit – V

Polya's Theorems and their Immediate Applications – Binary operations on Permutation Groups.

Text Book:

1. Combinatorics Theory and Applications by V.Krishnamurthy, Affliated East-West Press Private Limited, New Delhi, 1985.

Unit I	Chapter 1 section 1
Unit II	Chapter 1 section 2
Unit III	Chapter 1 sections 3 & 4
Unit IV	Chapter 1 sections 5 & 6
	Chapter 2 sections 1, 2
Unit V	Chapter 2 sections 3, 4

Books for Reference:

- 1. A First Course in Combinatorial Mathematics by IanAnderson, Oxford Applied Mathematics and Computing Science Series, U.K., 1974
- 2. Combinatorics by V.K.Balakrishnan, Schuam Series, 1996.

III YEAR - VI SEMESTER COURSE CODE: 7BMA6C1

CORE COURSE - XII – MECHANICS

Unit – I

Forces acting at a point – Resultant and Components – Definition – Simple cases of finding the resultant – Parallelogram law of forces – Analytical Expression for the resultant of two forces acting at a point – Triangle of forces – Perpendicular Triangle of forces – Converse of Triangle of forces – The polygon of forces – Lami's Theorem – An Extended form of the parallelogram law of forces – Parallel forces – Resultant of like parallel forces – unequal unlike parallel forces – Resultant of a number of parallel forces acting on a rigid body –Conditions of equilibrium of three coplanar parallel forces – Centre of two Parallel forces – moments – Physical significance – Geometrical representation – sign and unit of the moment – Varigon's theorem.

Unit – II

Equilibrium of three forces acting on a Rigid body - Rigid body subjected to any three forces – Three coplanar forces theorem – conditions of Equilibrium – Two Trigonometrical Theorem – Friction – Laws of friction – Theorems – Equilibrium of a particle on a rough inclined plane – (i) under a force parallel to the plane – (ii) under any forces – problems on friction – Uniform string under the action of gravity – Equation of the common catenary – axis, vertex, directrix, span and sag – Tenson at any point – Important formulae – Geometrical properties of the Common Catenary

Unit – III

Projectile – Definition – fundamental principles – path of the projectile – Characteristics of the motion of a projectile – Range on an inclined plane – greatest distance maximum range

Unit – IV

Impulsive force – Impulse – Impact of two bodies – Loss of Kinetic energy in Impact – Collision of elastic bodies – Fundamental laws of Impact – Newton's experimental law – Impact of a smooth sphere on a fixed smooth plane – Direct Impact of two smooth spheres – Loss of kinetic energy due to direct impact – Oblique impact of two smooth spheres – Loss of kinetic energy due to oblique impact.

Unit – V

Motion under the action of Central forces – Velocity and acceleration – Equation of motion in Polar Coordinates – Note on equiangular spiral – Motion under a central force – Differential Equation of Central Orbits – Perpendicular from the pole on the tangent – Formulae in Polar Coordinates – Pedal Equation of the central orbit – Pedal equation of some of the well known curves – Velocities in a central orbit – Two folded problems.

Text Books:

1. Statics (17thedition) by Dr. M.K.Venkataraman, Agasthiyar Publications, Tiruchirapalli, 17th Edition, July 2014.

2. Dynamics (18th edition) byDr. M.K.Venkataraman, Agasthiyar Publications, Tiruchirapalli, 2017

	1 /
Unit I	Chapter 2sections $1 - 10$ of (1)
	Chapter 3 sections $1 - 12 \text{ of } (1)$
Unit II	Chapter 5 sections 1 – 5 & Chapter 7 of (1)
	Chapter 11 sections $1 - 6$ of (1)
Unit III	Chapter 6 sections 1 – 5, 12, 13, 14, of (2)
Unit IV	Chapter 7 sections $1 - 4$ of (2)
	Chapter 8 sections $1 - 8$ of (2)
Unit V	Chapter 11 sections $1 - 11$ of (2)

Books for Reference:

- 1. Mechanics by P.Duraipandian, Emerald Publishers, Chennai, 1984.
- 2. Statics by S.Narayanan S.Chand & Co., Chennai, 1986.
- 3. Dynamics by S.Narayanan S.Chand & Co., Chennai, 1986.

III YEAR - VI SEMESTER COURSE CODE: 7BMA6C2

CORE COURSE – XIII – COMPLEX ANALYSIS

Unit – I

Functions of a Complex variable – Limits – Theorems on Limits – Continuous functions – Differentiability – The Cauchy – Riemann equations – Analytic functions – Harmonic functions.

Unit – II

Elementary Transformations – Bilinear Transformations – Cross ratio – Fixed points of Bilinear Transformation – Some special Bilinear transformations.

Unit – III

Complex integration – Definite integral – Cauchy's Theorem – Cauchy's Integral formula – Higher derivatives.

Unit – IV

Series expansions – Taylor's Series – Laurent's Series – Zeros of an analytic function Singularities.

Unit – V

Residues – Cauchy's Residue Theorem – Evaluation of definite integrals.

Text Book:

1. Complex Analysis by Dr.S.Arumugam, A.Thangapandi Isaac &Dr. A.Somasundaram, Scitech Publications (India) Pvt. Ltd, Chennai, 2017.

Unit I	Chapter 1 sections 2.1 to 2.8
Unit II	Chapter 3 sections 3.1 to 3.5
Unit III	Chapter 6 sections 6.1 to 6.4
Unit IV	Chapter 7 sections 7.1 to 7.4
Unit V	Chapter 8 sections 8.1 to 8.3

Books for Reference:

- 1. P.P.Gupta Kedarnath&Ramnath, Complex Variables, Meerut Delhi.
- 2. J.N.Sharma, Functions of a Complex Variable, Krishna Prakasan Media (P) Ltd,

13th Edition, 1996-97.

3. T.K.ManickavachagomPillay, Complex Analysis, S.Viswanathan Publishers Pvt. Ltd, 1994.

III YEAR - VI SEMESTER COURSE CODE: 7BMA6C3

CORE COURSE - XIV - STATISTICS - II

Unit – I

Probability – Conditional Probability – Random variables – Discrete Random Variable – Continuous Random Variable – Mathematical Expectations – Moment Generating Function – Characteristic function.

Unit – II

Some Special Distributions – Binomial Distribution – Poisson Distribution – Normal Distribution – Gamma Distribution – Chi-Square Distribution – Student's t-Distribution – Snedecor's F Distribution – Fischer's Z – Distribution.

Unit – III

Tests of Significance of large samples – Sampling – Sampling Distribution – Testing of Hypothesis – Procedure for Testing of Hypothesis for large samples – Tests of Significance for large samples.

Unit – IV

Tests of Significance based on 't' Distribution – Test of Significance based on F-Test – Test for Significance of an Observed sample correlation.

Unit – V

Test based on Chi - Square Distribution – Chi - Square Test forPopulation variance – Chi - Square Test – To test the Goodness of fit – Test for Independence of Attributes – Analysis of Variance – One Criterion of Classification – Two Criteria of Classification – Three criteria of Classification – Latin Square.

Text Book:

1. Statistics by Dr. S.Arumugam and Mr. A.Thangapandi Isaac, New Gamma Publishing House, Palayamkottai, June 2015.

Unit I	Chapter 11sections 11.1 & 11.2
	Chapter 12sections 12.1 to 12.6
Unit II	Chapter 13 sections 13.1 to 13.4
Unit III	Chapter 14 sections 14.1 to 14.5
Unit IV	Chapter 15 sections 15.1 to 15.3
Unit V	Chapter 16 sections 16.1 to 16.3

Book for Reference:

1. Statistics Theory and Practice by R.S.N.Pillai and Bagavathi, S.Chand and Company Pvt. Ltd., New Delhi, 2007.

III YEAR - VI SEMESTER COURSE CODE: 7BMA6C4

CORE COURSE- XV- OPERATIONS RESEARCH - II

Unit – I

Replacement problem and System Reliability – Introduction – Replacement of Equipment / Assert that Deteriorates Gradually – Replacement of Equipment that fails suddenly.

Unit – II

Inventory Control – Introduction – Types of Inventories – Reason for carrying Inventories – Costs Associated with Inventories – Factors affecting Inventory Control – The Concept of EOQ – Deterministic Inventory problems with no shortages, with shortages Problems of EOQ with Price Breaks.

Unit – III

Queuing Theory – Introduction – Queuing System – Elements of Queuing System – Operating Characteristics of a Queuing System – Deterministic Queuing System – Probability Distributions of Queuing Systems – Classification of Queuing models – Definition of Transient and Steady states – Poisson Queuing systesm – $(M/M/1) : (\infty/FIFO)$, $(M/M/1) : (\infty/SIRO), (M/M/1) : (N/FIFO)$ Generalized model Birth – Death Process.

Unit – IV

Network Scheduling by PERT / CPM – Network Basic components – Drawing network – Critical path Analysis – PERT Analysis – Distinction between PERT and CPM

Unit – V

 $Game \ Theory - Two \ person \ Zero - Sum \ Games - Basic \ terms - Maximin - Minimax \\ Principle - Games \ without \ saddle \ points - Mixed \ strategies - Graphical \ solution \ of \ 2 \times n \ and \\ m \times 2 \ games - Dominance \ Property - General \ solution \ of \ m \times n \ rectangular \ games.$

Text Book:

1. Operations Research (14th Edition) by KantiSwarup, P.K.Gupta & ManMohan, Sultan Chand & Sons, Educational Publishers, New Delhi, 2008.

Unit I	Chapter 18sections 18.1 to 18.3
Unit II	Chapter 19 sections 19.1 – 19.3, 19.6, 19.7, 19.9, 19.10 – 19.12
Unit III	Chapter 21 sections 21.1 –21.9 upto model IV
Unit IV	Chapter 25 sections 25.1 – 25.8

Books for Reference:

- 1. Operations Research (2nd edition) by P.K.Gupta and D.S.Hira, S.Chand& Co., New Delhi, 2004.
- Operations Research (2nd edition) by S.Kalavathy, Vikas Publishing House, New Delhi, 2002.

III YEAR - VI SEMESTER COURSE CODE: 7BMAE3A

ELECTIVE COURSE - III (A) – DISCRETE MATHEMATICS

Unit – I

IF statements – connectives – Atomic and compound statements – Well formed formulae –Truth table of a formula – Tautology – Implications and Equivalence formulae – Replacement process – Functionally complete sets of connectives and Duality law – Normal forms – Principle Normal forms – Theory of Inference.

Unit – II

Relations – Representation of a relation – Operations on relations – Equivalence relation – Lattices – Some properties of Lattices, New Lattices – Modular and Distributive Lattices – Boolean Algebra, Boolean Polynomials.

Unit – III

Coding theory – Introduction – Hamming Distance – Encoding a message – Group codes – Procedure for Generating Group codes – Decoding and Error correction.

Unit – IV

Finite Automata – Definition – Representation – Acceptability of a string –Languages accepted by a Finite Automata – Non-Deterministic Finite Automata – Equivalence of FA and NFA

Unit – V

Phase Structure grammars – Chomsky Hierarchy of Languages – Finite Automata and Regular languages

Text Book:

1. Discrete Mathematics by M.K.Venkataraman, N.Sridharan&N.ChandraSekaran, The National Publishing Company, Chennai 2000.

Unit I	Chapter 9sections 1 to 13
Unit II	Chapter 2 sections 2 to 5; Chapter10 sections 1 to 6
Unit III	Chapter 8 sections 1 to 6
Unit IV	Chapter 12 sections 1 to 9
Unit V	Chapter 12 sections 16 to 18

Books for Reference:

- 1. Discrete Mathematical Structure with Applications to Computer Science J.P.Trembly&R.Manohar, Tata McGraw Hill Publishing Company, New Delhil 2003.
- 2. Discrete Mathematics by Prof. V.Sundaresan, K.S.GanapathySubramaniyan&K.Ganesan, Tata McGraw Hill Publishing Company, New Delhi, 2000.

III YEAR - VI SEMESTER COURSE CODE: 7BMAE3B

ELECTIVE COURSE - III (B) – FUZZY ALGEBRA

Unit – I

Fuzzy sets – Basic types – Basic concepts - α - cuts – Additional prosperities of α - cuts – Extension principle for Fuzzy sets.

Unit – II

Operations on Fuzzy sets – Types of operations – Fuzzy complements – Fuzzy intersections : t-norms – Fuzzy Unions : t-conorms.

Unit – III

Combinations of operations – Fuzzy Arithmetic – Fuzzy numbers

Unit – IV

Arithmetic operations on intervals – Arithmetic operations on Fuzzy numbers – Fuzzy relations – Binary fuzzy relations – Fuzzy equivalence relations – Fuzzy compatibility relations.

Unit – V

Fuzzy ordering relations – fuzzy morphisms.

Text Book:

1. George J.Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic, Theory and Applications, Prentice Hall Inc., New Jersey. 1995.

Unit I	Chapter 1 sections 1.3, 1.4
	Chapter 2 sections 2.1, 2.3
Unit II	Chapter 3 sections 3.1 to 3.4
Unit III	Chapter 3 section 3.5
	Chapter 4 section 4.1
Unit IV	Chapter 4 sections 4.3& 4.4
	Chapter 5 sections 5.3, 5.5, 5.6
Unit V	Chapter 5 sections 5.7 & 5.8

Books for Reference:

1. H.J.Zimmermann, Fuzzy Set Theory and its Applications, Allied Publishers Limited, New Delhi, 1991.
